Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534407

RESUMO

Insect pests rank among the major limiting factors in agricultural production worldwide. In addition to direct effect on crops, some phytophagous insects are efficient vectors for plant disease transmission. Large amounts of conventional insecticides are required to secure food production worldwide, with a high impact on the economy and environment, particularly when beneficial insects are also affected by chemicals that frequently lack the desired specificity. RNA interference (RNAi) is a natural mechanism gene expression regulation and protection against exogenous and endogenous genetic elements present in most eukaryotes, including insects. Molecules of double-stranded RNA (dsRNA) or highly structured RNA are the substrates of cellular enzymes to produce several types of small RNAs (sRNAs), which play a crucial role in targeting sequences for transcriptional or post-transcriptional gene silencing. The relatively simple rules that underlie RNAi regulation, mainly based in Watson-Crick complementarity, have facilitated biotechnological applications based on these cellular mechanisms. This includes the promise of using engineered dsRNA molecules, either endogenously produced in crop plants or exogenously synthesized and applied onto crops, as a new generation of highly specific, sustainable, and environmentally friendly insecticides. Fueled on this expectation, this article reviews current knowledge about the RNAi pathways in insects, and some other applied questions such as production and delivery of recombinant RNA, which are critical to establish RNAi as a reliable technology for insect control in crop plants.

2.
Plant Biotechnol J ; 22(4): 876-891, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37966715

RESUMO

Viral nanoparticles (VNPs) are a new class of virus-based formulations that can be used as building blocks to implement a variety of functions of potential interest in biotechnology and nanomedicine. Viral coat proteins (CP) that exhibit self-assembly properties are particularly appropriate for displaying antigens and antibodies, by generating multivalent VNPs with therapeutic and diagnostic potential. Here, we developed genetically encoded multivalent VNPs derived from two filamentous plant viruses, potato virus X (PVX) and tobacco etch virus (TEV), which were efficiently and inexpensively produced in the biofactory Nicotiana benthamiana plant. PVX and TEV-derived VNPs were decorated with two different nanobodies recognizing two different regions of the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. The addition of different picornavirus 2A ribosomal skipping peptides between the nanobody and the CP allowed for modulating the degree of VNP decoration. Nanobody-decorated VNPs purified from N. benthamiana tissues successfully recognized the RBD antigen in enzyme-linked immunosorbent assays and showed efficient neutralization activity against pseudoviruses carrying the Spike protein. Interestingly, multivalent PVX and TEV-derived VNPs exhibited a neutralizing activity approximately one order of magnitude higher than the corresponding nanobody in a dimeric format. These properties, combined with the ability to produce VNP cocktails in the same N. benthamiana plant based on synergistic infection of the parent PVX and TEV, make these green nanomaterials an attractive alternative to standard antibodies for multiple applications in diagnosis and therapeutics.


Assuntos
COVID-19 , Nanopartículas , Vírus de Plantas , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Anticorpos de Domínio Único/genética , COVID-19/genética , Nanopartículas/química , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
Pest Manag Sci ; 80(3): 1087-1098, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37851867

RESUMO

BACKGROUND: The Mediterranean fruit fly (medfly), Ceratitis capitata Wiedemann, is a major pest affecting fruit and vegetable production worldwide, whose control is mainly based on insecticides. Double-stranded RNA (dsRNA) able to down-regulate endogenous genes, thus affecting essential vital functions via RNA interference (RNAi) in pests and pathogens, is envisioned as a more specific and environmentally-friendly alternative to traditional insecticides. However, this strategy has not been explored in medfly yet. RESULTS: Here, we screened seven candidate target genes by injecting in adult medflies gene-specific dsRNA hairpins transcribed in vitro. Several genes were significantly down-regulated, resulting in increased insect mortality compared to flies treated with a control dsRNA targeting the green fluorescent protein (GFP) complementary DNA (cDNA). Three of the dsRNAs, homologous to the beta subunit of adenosine triphosphate (ATP) synthase (ATPsynbeta), a vacuolar ATPase (V-ATPase), and the ribosomal protein S13 (RPS13), were able to halve the probability of survival in only 48 h after injection. We then produced new versions of these three dsRNAs and that of the GFP control as circular molecules in Escherichia coli using a two-self-splicing-intron-based expression system and tested them as orally-delivered insecticidal compounds against medfly adults. We observed a significant down-regulation of V-ATPase and RPS13 messenger RNAs (mRNAs) (approximately 30% and 90%, respectively) compared with the control medflies after 3 days of treatment. No significant mortality was recorded in medflies, but egg laying and hatching reduction was achieved by silencing V-ATPase and RPS13. CONCLUSION: In sum, we report the potential of dsRNA molecules as oral insecticide in medfly. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ceratitis capitata , Inseticidas , Animais , Interferência de RNA , RNA de Cadeia Dupla , Escherichia coli , Adenosina Trifosfatases
4.
Plant J ; 118(1): 58-72, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38100533

RESUMO

Crocins are glucosylated apocarotenoids present in flowers and fruits of a few plant species, including saffron, gardenia, and Buddleja. The biosynthesis of crocins in these plants has been unraveled, and the enzymes engineered for the production of crocins in heterologous systems. Mullein (Verbascum sp.) has been identified as a new source of crocins and picrocrocin. In this work, we have identified eight enzymes involved in the cleavage of carotenoids in two Verbascum species, V. giganteum and V. sinuatum. Four of them were homologous to the previously identified BdCCD4.1 and BdCCD4.3 from Buddleja, involved in the biosynthesis of crocins. These enzymes were analyzed for apocarotenogenic activity in bacteria and Nicotiana benthamiana plants using a virus-driven system. Metabolic analyses of bacterial extracts and N. benthamiana leaves showed the efficient activity of these enzymes to produce crocins using ß-carotene and zeaxanthin as substrates. Accumulations of 0.17% of crocins in N. benthamiana dry leaves were reached in only 2 weeks using a recombinant virus expressing VgCCD4.1, similar to the amounts previously produced using the canonical saffron CsCCD2L. The identification of these enzymes, which display a particularly broad substrate spectrum, opens new avenues for apocarotenoid biotechnological production.


Assuntos
Crocus , Cicloexenos , Glucosídeos , Terpenos , Verbascum , Verbascum/metabolismo , Crocus/genética , Crocus/química , Vitamina A/metabolismo , Carotenoides/metabolismo
5.
Nucleic Acids Res ; 51(19): 10719-10736, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37713607

RESUMO

Artificial microRNAs (amiRNAs) are highly specific, 21-nucleotide (nt) small RNAs designed to silence target transcripts. In plants, their application as biotechnological tools for functional genomics or crop improvement is limited by the need of transgenically expressing long primary miRNA (pri-miRNA) precursors to produce the amiRNAs in vivo. Here, we analyzed the minimal structural and sequence requirements for producing effective amiRNAs from the widely used, 521-nt long AtMIR390a pri-miRNA from Arabidopsis thaliana. We functionally screened in Nicotiana benthamiana a large collection of constructs transiently expressing amiRNAs against endogenous genes and from artificially shortened MIR390-based precursors and concluded that highly effective and accurately processed amiRNAs can be produced from a chimeric precursor of only 89 nt. This minimal precursor was further validated in A. thaliana transgenic plants expressing amiRNAs against endogenous genes. Remarkably, minimal but not full-length precursors produce authentic amiRNAs and induce widespread gene silencing in N. benthamiana when expressed from an RNA virus, which can be applied into leaves by spraying infectious crude extracts. Our results reveal that the length of amiRNA precursors can be shortened without affecting silencing efficacy, and that viral vectors including minimal amiRNA precursors can be applied in a transgene-free manner to induce whole-plant gene silencing.


Assuntos
Arabidopsis , MicroRNAs , MicroRNAs/genética , Inativação Gênica , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Transgenes , Arabidopsis/genética
6.
Metabolites ; 13(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37367887

RESUMO

Crocins are glycosylated apocarotenoids with strong coloring power and anti-oxidant, anticancer, and neuro-protective properties. We previously dissected the saffron crocin biosynthesis pathway, and demonstrated that the CsCCD2 enzyme, catalyzing the carotenoid cleavage step, shows a strong preference for the xanthophyll zeaxanthin in vitro and in bacterio. In order to investigate substrate specificity in planta and to establish a plant-based bio-factory system for crocin production, we compared wild-type Nicotiana benthamiana plants, accumulating various xanthophylls together with α- and ß-carotene, with genome-edited lines, in which all the xanthophylls normally accumulated in leaves were replaced by a single xanthophyll, zeaxanthin. These plants were used as chassis for the production in leaves of saffron apocarotenoids (crocins, picrocrocin) using two transient expression methods to overexpress CsCCD2: agroinfiltration and inoculation with a viral vector derived from tobacco etch virus (TEV). The results indicated the superior performance of the zeaxanthin-accumulating line and of the use of the viral vector to express CsCCD2. The results also suggested a relaxed substrate specificity of CsCCD2 in planta, cleaving additional carotenoid substrates.

7.
Anal Chem ; 95(25): 9564-9574, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37204239

RESUMO

Recurrent disease outbreaks caused by different viruses, including the novel respiratory virus SARS-CoV-2, are challenging our society at a global scale; so versatile virus detection methods would enable a calculated and faster response. Here, we present a novel nucleic acid detection strategy based on CRISPR-Cas9, whose mode of action relies on strand displacement rather than on collateral catalysis, using the Streptococcus pyogenes Cas9 nuclease. Given a preamplification process, a suitable molecular beacon interacts with the ternary CRISPR complex upon targeting to produce a fluorescent signal. We show that SARS-CoV-2 DNA amplicons generated from patient samples can be detected with CRISPR-Cas9. We also show that CRISPR-Cas9 allows the simultaneous detection of different DNA amplicons with the same nuclease, either to detect different SARS-CoV-2 regions or different respiratory viruses. Furthermore, we demonstrate that engineered DNA logic circuits can process different SARS-CoV-2 signals detected by the CRISPR complexes. Collectively, this CRISPR-Cas9 R-loop usage for the molecular beacon opening (COLUMBO) platform allows a multiplexed detection in a single tube, complements the existing CRISPR-based methods, and displays diagnostic and biocomputing potential.


Assuntos
COVID-19 , Sistemas CRISPR-Cas , Humanos , Sistemas CRISPR-Cas/genética , SARS-CoV-2/genética , COVID-19/diagnóstico , DNA
9.
STAR Protoc ; 4(1): 102091, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853698

RESUMO

Viral vectors hold enormous potential for genome editing in plants as transient delivery vehicles of CRISPR-Cas components. Here, we describe a protocol to assemble plant viral vectors for single-guide RNA (sgRNA) delivery. The obtained viral constructs are based on compact T-DNA binary vectors of the pLX series and are delivered into Cas9-expressing plants through agroinoculation. This approach allows rapidly assessing sgRNA design for plant genome targeting, as well as the recovery of progeny with heritable mutations at targeted loci. For complete details on the use and execution of this protocol, please refer to Uranga et al. (2021)1 and Aragonés et al. (2022).2.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Vetores Genéticos/genética , Plantas/genética
10.
Biology (Basel) ; 12(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36829451

RESUMO

Viroids are a unique type of infectious agent, exclusively composed of a relatively small (246-430 nt), highly base-paired, circular, non-coding RNA. Despite the small size and non-coding nature, the more-than-thirty currently known viroid species infectious of higher plants are able to autonomously replicate and move systemically through the host, thereby inducing disease in some plants. After recalling viroid discovery back in the late 60s and early 70s of last century and discussing current hypotheses about their evolutionary origin, this article reviews our current knowledge about these peculiar infectious agents. We describe the highly base-paired viroid molecules that fold in rod-like or branched structures and viroid taxonomic classification in two families, Pospiviroidae and Avsunviroidae, likely gathering nuclear and chloroplastic viroids, respectively. We review current knowledge about viroid replication through RNA-to-RNA rolling-circle mechanisms in which host factors, notably RNA transporters, RNA polymerases, RNases, and RNA ligases, are involved. Systemic movement through the infected plant, plant-to-plant transmission and host range are also discussed. Finally, we focus on the mechanisms of viroid pathogenesis, in which RNA silencing has acquired remarkable importance, and also for the initiation of potential biotechnological applications of viroid molecules.

11.
Plant Genome ; 16(2): e20220, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35698891

RESUMO

The recent emergence of tools based on the clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins have revolutionized targeted genome editing, thus holding great promise to both basic plant science and precision crop breeding. Conventional approaches for the delivery of editing components rely on transformation technologies or transient delivery to protoplasts, both of which are time-consuming, laborious, and can raise legal concerns. Alternatively, plant RNA viruses can be used as transient delivery vectors of CRISPR-Cas reaction components, following the so-called virus-induced genome editing (VIGE). During the last years, researchers have been able to engineer viral vectors for the delivery of CRISPR guide RNAs and Cas nucleases. Considering that each viral vector is limited to its molecular biology properties and a specific host range, here we review recent advances for improving the VIGE toolbox with a special focus on strategies to achieve tissue-culture-free editing in plants. We also explore the utility of CRISPR-Cas technology to enhance biotic resistance with a special focus on plant virus diseases. This can be achieved by either targeting the viral genome or modifying essential host susceptibility genes that mediate in the infection process. Finally, we discuss the challenges and potential that VIGE holds in future breeding technologies.


Assuntos
Edição de Genes , Vírus de Plantas , Sistemas CRISPR-Cas , Melhoramento Vegetal , Plantas/genética , Vírus de Plantas/genética
12.
J Exp Bot ; 74(5): 1564-1578, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36111947

RESUMO

Potato spindle tuber viroid (PSTVd) is a plant pathogen naturally infecting economically important crops such as tomato (Solanum lycopersicum). Here, we aimed to engineer tomato plants highly resistant to PSTVd and developed several S. lycopersicum lines expressing an artificial microRNA (amiRNA) against PSTVd (amiR-PSTVd). Infectivity assays revealed that amiR-PSTVd-expressing lines were not resistant but instead hypersusceptible to the viroid. A combination of phenotypic, molecular, and metabolic analyses of amiRNA-expressing lines non-inoculated with the viroid revealed that amiR-PSTVd was accidentally silencing the tomato STEROL GLYCOSYLTRANSFERASE 1 (SlSGT1) gene, which caused late developmental and reproductive defects such as leaf epinasty, dwarfism, or reduced fruit size. Importantly, two independent transgenic tomato lines each expressing a different amiRNA specifically designed to target SlSGT1 were also hypersusceptible to PSTVd, thus demonstrating that down-regulation of SlSGT1 was responsible for the viroid-hypersusceptibility phenotype. Our results highlight the role of sterol glycosyltransferases in proper plant development and indicate that the imbalance of sterol glycosylation levels favors viroid infection, most likely by facilitating viroid movement.


Assuntos
MicroRNAs , Solanum lycopersicum , Solanum tuberosum , Viroides , Viroides/genética , Solanum lycopersicum/genética , Regulação para Baixo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , MicroRNAs/genética , Doenças das Plantas/genética , Solanum tuberosum/genética , RNA Viral/genética
13.
Sci Rep ; 12(1): 15743, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131073

RESUMO

A gene construct encoding a xylanase, which is active in extreme conditions of temperature and alkaline pH (90 °C, pH 10.5), has been transitorily expressed with high efficiency in Nicotiana benthamiana using a viral vector. The enzyme, targeted to the apoplast, accumulates in large amounts in plant tissues in as little as 7 days after inoculation, without detrimental effects on plant growth. The properties of the protein produced by the plant, in terms of resistance to temperature, pH, and enzymatic activity, are equivalent to those observed when Escherichia coli is used as a host. Purification of the plant-produced recombinant xylanase is facilitated by exporting the protein to the apoplastic space. The production of this xylanase by N. benthamiana, which avoids the hindrances derived from the use of E. coli, namely, intracellular production requiring subsequent purification, represents an important step for potential applications in the food industry in which more sustainable and green products are continuously demanded. As an example, the use of the enzyme producing prebiotic xylooligosdaccharides from xylan is here reported.


Assuntos
Extremófilos , Xilanos , Endo-1,4-beta-Xilanases/química , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Extremófilos/metabolismo , Glucuronatos , Concentração de Íons de Hidrogênio , Hidrólise , Oligossacarídeos , Prebióticos , Temperatura , Nicotiana/genética , Nicotiana/metabolismo , Xilanos/metabolismo
14.
ACS Synth Biol ; 11(7): 2384-2393, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35793201

RESUMO

Viral infections in plants threaten food security. Thus, simple and effective methods for virus detection are required to adopt early measures that can prevent virus spread. However, current methods based on the amplification of the viral genome by polymerase chain reaction (PCR) require laboratory conditions. Here, we exploited the CRISPR-Cas12a and CRISPR-Cas13a/d systems to detect three RNA viruses, namely, Tobacco mosaic virus, Tobacco etch virus, and Potato virus X, in Nicotiana benthamiana plants. We applied the CRISPR-Cas12a system to detect viral DNA amplicons generated by PCR or isothermal amplification, and we also performed a multiplexed detection in plants with mixed infections. In addition, we adapted the detection system to bypass the costly RNA purification step and to get a visible readout with lateral flow strips. Finally, we applied the CRISPR-Cas13a/d system to directly detect viral RNA, thereby avoiding the necessity of a preamplification step and obtaining a readout that scales with the viral load. These approaches allow for the performance of viral diagnostics within half an hour of leaf harvest and are hence potentially relevant for field-deployable applications.


Assuntos
Sistemas CRISPR-Cas , Vírus de Plantas , Sistemas CRISPR-Cas/genética , Genoma Viral , Vírus de Plantas/genética , Plantas/genética , RNA Viral/genética , Nicotiana/genética
15.
Plant J ; 111(6): 1550-1564, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35822533

RESUMO

Programmable transcriptional regulators based on CRISPR architecture are promising tools for the induction of plant gene expression. In plants, CRISPR gene activation is effective with respect to modulating development processes, such as the flowering time or customizing biochemical composition. The most widely used method for delivering CRISPR components into the plant is Agrobacterium tumefaciens-mediated genetic transformation, either transient or stable. However, as a result of their versatility and their ability to move, virus-derived systems have emerged as an interesting alternative for supplying the CRISPR components to the plant, in particular guide RNA (gRNA), which represents the variable component in CRISPR strategies. In the present study, we describe a Potato virus X-derived vector that, upon agroinfection in Nicotiana benthamiana, serves as a vehicle for delivery of gRNAs, producing highly specific virus-induced gene activation. The system works in combination with a N. benthamiana transgenic line carrying the remaining complementary CRISPR gene activation components, specifically the dCasEV2.1 cassette, which has been shown previously to mediate strong programmable transcriptional activation in plants. Using an easily scalable, non-invasive spraying method, we show that gRNA-mediated activation programs move locally and systemically, generating a strong activation response in different target genes. Furthermore, by activating three different endogenous MYB transcription factors, we demonstrate that this Potato virus X-based virus-induced gene reprogramming strategy results in program-specific metabolic fingerprints in N. benthamiana leaves characterized by distinctive phenylpropanoid-enriched metabolite profiles.


Assuntos
Potexvirus , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Expressão Gênica , Potexvirus/genética , Potexvirus/metabolismo , RNA Guia de Cinetoplastídeos/genética , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo
16.
Front Bioeng Biotechnol ; 10: 877363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433643

RESUMO

Viral nanoparticles (VNPs) have recently attracted attention for their use as building blocks for novel materials to support a range of functions of potential interest in nanotechnology and medicine. Viral capsids are ideal for presenting small epitopes by inserting them at an appropriate site on the selected coat protein (CP). VNPs presenting antibodies on their surfaces are considered highly promising tools for therapeutic and diagnostic purposes. Due to their size, nanobodies are an interesting alternative to classic antibodies for surface presentation. Nanobodies are the variable domains of heavy-chain (VHH) antibodies from animals belonging to the family Camelidae, which have several properties that make them attractive therapeutic molecules, such as their small size, simple structure, and high affinity and specificity. In this work, we have produced genetically encoded VNPs derived from two different potyviruses-the largest group of RNA viruses that infect plants-decorated with nanobodies. We have created a VNP derived from zucchini yellow mosaic virus (ZYMV) decorated with a nanobody against the green fluorescent protein (GFP) in zucchini (Cucurbita pepo) plants. As reported for other viruses, the expression of ZYMV-derived VNPs decorated with this nanobody was only made possible by including a picornavirus 2A splicing peptide between the fused proteins, which resulted in a mixed population of unmodified and decorated CPs. We have also produced tobacco etch virus (TEV)-derived VNPs in Nicotiana benthamiana plants decorated with the same nanobody against GFP. Strikingly, in this case, VNPs could be assembled by direct fusion of the nanobody to the viral CP with no 2A splicing involved, likely resulting in fully decorated VNPs. For both expression systems, correct assembly and purification of the recombinant VNPs was confirmed by transmission electron microscope; the functionality of the CP-fused nanobody was assessed by western blot and binding assays. In sum, here we report the production of genetically encoded plant-derived VNPs decorated with a nanobody. This system may be an attractive alternative for the sustainable production in plants of nanobody-containing nanomaterials for diagnostic and therapeutic purposes.

17.
Methods Mol Biol ; 2408: 227-242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35325426

RESUMO

RNAi-based tools are widely used in gene function studies and for crop improvement. However, no effective methods for precisely controlling the degree of induced silencing have been reported until recently. Here we report a detailed protocol for designing and generating synthetic trans-acting small interfering RNA (syn-tasiRNA) constructs for fine-tuning gene expression in plants. Recently developed high-throughput AtTAS1c-D2-B/c-based vectors are used to clone and express syn-tasiRNAs that possess different efficacies depending on their precursor location and on their degree of base-pairing with the 5' end of target RNAs.


Assuntos
MicroRNAs , Expressão Gênica , MicroRNAs/genética , Plantas/genética , Plantas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
18.
Biotechnol J ; 17(7): e2100504, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35332696

RESUMO

Viral vectors provide a quick and effective way to express exogenous sequences in eukaryotic cells and to engineer eukaryotic genomes through the delivery of CRISPR/Cas components. Here, we present JoinTRV, an improved vector system based on tobacco rattle virus (TRV) that simplifies gene silencing and genome editing logistics. Our system consists of two mini T-DNA vectors from which TRV RNA1 (pLX-TRV1) and an engineered version of TRV RNA2 (pLX-TRV2) are expressed. The two vectors have compatible origins that allow their cotransformation and maintenance into a single Agrobacterium cell, as well as their simultaneous delivery to plants by a one-Agrobacterium/two-vector approach. The JoinTRV vectors are substantially smaller than those of any known TRV vector system, and pLX-TRV2 can be easily customized to express desired sequences by one-step digestion-ligation and homology-based cloning. The system was successfully used in Nicotiana benthamiana for launching TRV infection, for recombinant protein production, as well as for robust virus-induced gene silencing (VIGS) of endogenous transcripts using bacterial suspensions at low optical densities. JoinTRV-mediated delivery of single-guide RNAs in a Cas9 transgenic host allowed somatic cell editing efficiencies of ≈90%; editing events were heritable and >50% of the progeny seedlings showed mutations at the targeted loci.


Assuntos
Edição de Genes , Vírus de Plantas , Agrobacterium/genética , Inativação Gênica , Vetores Genéticos/genética , Genoma de Planta , Vírus de Plantas/genética , Nicotiana/genética , Nicotiana/metabolismo
19.
FEMS Microbiol Rev ; 46(4)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35195244

RESUMO

Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)-non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.


Assuntos
Potyviridae , Potyvirus , Evasão da Resposta Imune , Doenças das Plantas , Potyviridae/genética , Potyviridae/metabolismo , Potyvirus/genética , Proteoma/metabolismo
20.
Curr Opin Plant Biol ; 66: 102190, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35183926

RESUMO

Enrichment of foodstuffs with health-promoting metabolites such as carotenoids is a powerful tool to fight against unhealthy eating habits. Dietary carotenoids are vitamin A precursors and reduce risk of several chronical diseases. Additionally, carotenoids and their cleavage products (apocarotenoids) are used as natural pigments and flavors by the agrofood industry. In the last few years, major advances have been made in our understanding of how plants make and store carotenoids in their natural compartments, the plastids. In part, this knowledge has been acquired by using transient expression systems, notably agroinfiltration and viral vectors. These techniques allow profound changes in the carotenoid profile of plant tissues at the desired developmental stage, hence preventing interference with normal plant growth and development. Here we review how transient expression approaches have contributed to learn about the structure and regulation of plant carotenoid biosynthesis and to rewire carotenoid metabolism and storage for efficient biofortification of plant tissues.


Assuntos
Carotenoides , Plastídeos , Biofortificação , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos , Plantas/genética , Plantas/metabolismo , Plastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...